If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2-37=0
a = 1; b = 0; c = -37;
Δ = b2-4ac
Δ = 02-4·1·(-37)
Δ = 148
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{148}=\sqrt{4*37}=\sqrt{4}*\sqrt{37}=2\sqrt{37}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{37}}{2*1}=\frac{0-2\sqrt{37}}{2} =-\frac{2\sqrt{37}}{2} =-\sqrt{37} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{37}}{2*1}=\frac{0+2\sqrt{37}}{2} =\frac{2\sqrt{37}}{2} =\sqrt{37} $
| 2-7c=31 | | 3(x+7)=7(x−1) | | 3-7k=-2k-17 | | -64+11x=15x+28 | | 3x^2+40=0 | | 4-c=-1/3+4 | | -4x=+3=19 | | 2.4=3s=-0.6 | | 5x-50=3x+14 | | 5(8x-)-10=40 | | 11(n-9)=-165 | | 138=6x-4(4+7x) | | 7X-17=9x+23 | | -4x-6=14x | | c3+15=8 | | (15x+11)=180 | | 52+(15x+11)+(9x-5)=180 | | 2x+3x-4=22+4x | | -11-3x=-x+25 | | 3z/7+2=4 | | -11-3x=-x | | 20-x=41 | | -12x-215=104-x | | 7y+-4y-6=38.94 | | 8/1/2x=43 | | -33-4x=-x+24 | | 2(l+6)=26 | | (9w-3)+6w=6 | | 8x+6x-20=60 | | X+11=37-5x | | 5a^2+5a-14=-4 | | 5/1=20x/160 |